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We present an antiferromagnetic quantum spin-1/2 model on honeycomb lattice. It has two parts, one of
which is the usual nearest-neighbor Heisenberg model. The other part is a certain multiple spin interaction
term, introduced by us, which is exactly solvable for the ground state. Without the Heisenberg part, the model
has an exact threefold degenerate dimer ground state. This exact ground state is also noted to exist for the
general spin-S case. For the spin-1/2 case, we further carry out the triplon analysis in the ground state to study
the competition between the Heisenberg and the multiple spin interactions. This approximate calculation
exhibits a continuous quantum phase transition from the dimer order to Néel order.
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I. INTRODUCTION

The low-dimensional quantum spin systems are a subject
of great current interest. Much of this research directly at-
tends to the real �quasi-�one-dimensional �1D� and two-
dimensional �2D� spin systems studied in the laboratories.1–4

There is also a formal side to it which is concerned with
investigating, at various theoretical levels, the effects of low
spatial dimensionality, quantum spin fluctuations, and frus-
tration on the nature of the ground state of a model spin
system. Since the antiferromagnetism is sensitive to all of
these, the ground state of a quantum antiferromagnet �AF�
can choose from a variety of possibilities �known or not yet
known�.5–7 For example, the ground state of the spin-1/2
nearest-neighbor �nn� Heisenberg antiferromagnet is a criti-
cal spin liquid �with power-law decay of the spin-spin corre-
lations and zero local magnetic moment� in 1D but it has
Néel order on two and higher dimensional bipartite lattices.
Furthermore, the competing interactions can induce changes
in the nature of ground state, say, from being a Néel-ordered
state to becoming spontaneously dimerized8 �or something
else�. The Majumdar-Ghosh model presents an exactly solv-
able case of a spontaneously dimerized doubly degenerate
singlet ground state in 1D.9 Similar spin models have also
been constructed in 2D.8,10–13

Of the spin systems in 2D, the honeycomb lattice comes
across as a special case to study. Its nearest-neighbor coor-
dination is three which lies between 1D and the square lat-
tice. Hence, the quantum fluctuations are expected to be
stronger on the honeycomb than on the square lattice. More-
over, the honeycomb lattice has two spins per unit cell. Thus,
we expect a natural case for spontaneous dimer order, with-
out breaking translational symmetry, in a honeycomb antifer-
romagnet. For the spin-1/2 nn Heisenberg AF on honeycomb
lattice, various calculations14–16 indeed show larger quantum
fluctuations than on the square lattice but the ground state
still exhibits Néel order �although weaker than square lat-
tice�. Several other studies have shown that under various
frustrated conditions the ground state on honeycomb lattice
can get disordered.17–21 Motivated by these observations, one
of us �B.K.� constructed a quantum spin model with multiple
spin interactions on honeycomb lattice, which has an exact
triply degenerate dimer ground state �see Fig. 2�. Here, we

present this model with an additional nn Heisenberg AF in-
teraction and investigate using triplon mean-field theory
�MFT� the transition from the dimer to Néel order in the
ground state. We believe this to be an interesting model for
two simple reasons. First, a number of antiferromagnetic ma-
terials with honeycomb structure have been studied
recently.3,4,22 While most of these exhibit AF order at low
temperatures, a few do show spin-gap behavior.23 It is pos-
sible that the dimerized singlet ground state arising in this
model may well be realized in a real material. Second, the
investigation of deconfined quantum criticality in 2D quan-
tum antiferromagnets has been a subject of active research in
recent times.6,24,25 This model presents an interesting case to
study in this context.

This paper is organized as follows. In Sec. II, we discuss
the model and its exact ground state. In Sec. III, we do the
triplon mean-field theory. In Sec. IV, we discuss the results
of the triplon analysis, in particular, the spin gap and stag-
gered magnetization, and the quantum phase diagram. Fi-
nally, we conclude with a summary.

II. MODEL

In this paper, we study the following quantum spin-1/2
model on honeycomb lattice �pictorially shown in Fig. 1�.

H = J�
�ij�

Si · S j +
K

8 �̋ �S12
2 S34

2 S56
2 + S23

2 S45
2 S61

2 � . �1�

Here, Sij
2 = �Si+S j�2. The first term above is the Heisenberg

model with nearest-neighbor interaction J. The second term
is what we have introduced to realize the dimer ground state
�as in Fig. 2�. This multiple spin interaction is generated by
the product of the pairwise total spins of three nn pairs on
each hexagon �in two different ways, �1,2��3,4��5,6� or
�2,3��4,5��6,1��.26 It involves all the six spins of an
hexagon and the summation is taken over all hexagonal
plaquettes of the honeycomb lattice with periodic boundary
condition. After expanding Sij

2 as 3
2 +2Si ·S j �for a pair of spin

1/2� and regrouping different terms, Eq. �1� becomes
H= 27

64KL+H�2�+H�4�+H�6�, where L is the total number of
lattice sites and H�2�, H�4�, and H�6� denote the quadratic,
quartic, and sextic spin interactions, respectively. Note that H
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respects the lattice translation and point-group symmetries
and is also SU�2� invariant. We take J, K�0, and J+K=1
sets the unit of energy. Thus, J=1−K, where K� �0,1�.

A. Exact ground state

Consider the model for K=1. It can be written as

HK =
1

8�̋ �hK1 + hK2� , �2�

where hK1=S12
2 S34

2 S56
2 and hK2=S23

2 S45
2 S61

2 . In this case, the nn
Heisenberg exchange is absent. We only have the multiple
spin interactions. Clearly, hK1 and hK2 have positive eigen-
values, with zero as the minimum. Hence, the ground-state
energy of HK is bounded below by zero. The operator hK1
gives zero when at least one of the three concerned spin
pairs, that is, �1,2�, �3,4�, or �5,6�, forms a singlet. Similarly
for hK2. Therefore, on a single hexagon, a zero energy
eigenstate of hK1+hK2 can be obtained by simultaneously
forming singlets on the opposite edges. It leaves the remain-
ing two spins as “free.” For example, one such state is
�1,2� � �m3� � �4,5� � �m6�, where �i , j�= ��↑i↓ j�− �↓i↑ j�� /	2
is the singlet formed by i and j spins, and mk=↑ or ↓. More-
over, there are three ways of choosing such dimer forming
spin pairs. After knowing these dimer states for a single
hexagon, it is straightforward to show that the three dimer-
ordered configurations shown in Fig. 2 form the exact zero
energy ground state of HK on the full lattice. We have also
cross checked this analytic assertion by numerically diago-
nalizing H on 12-site and 18-site spin clusters with periodic
boundary conditions. The results for the 18-site cluster are
presented in the following section. These dimer configura-
tions have also been known to arise in the ground state of the
quantum dimer model27 and a frustrated SU�2� spin-1/2
model on honeycomb lattice.19 Ours is an example of a quan-
tum spin model on honeycomb lattice where this triply de-
generate dimer ground state is realized exactly. Moreover, it
is valid for arbitrary spins �discussed below�, although we
have presented only spin-1/2 case in this paper.

Let the ground-state dimer configurations be denoted as
��1�, ��2�, and ��3�. These dimer states do not break the

translational symmetry of the lattice and are obviously SU�2�
invariant. The point-group rotational symmetry is broken,
however. The wave function of the dimer state, ��1�, can be
explicitly written as

��1� = � 

�i,j��D

�i, j� , �3�

where D is the set of singlet forming bonds in the state ��1�.
The other two states, ��2� and ��3�, are related to ��1� via the
threefold rotation as

��2� = C3��1� , �4a�

��3� = C3
2��1� , �4b�

where C3 is the clockwise 2� /3 rotation operator.

1 2

3

45

6

FIG. 1. �Color online� Pictorial representation of the model �Eq.
1�. The connecting lines denote the nearest-neighbor antiferromag-
netic interaction, J. The shaded hexagon denotes the multiple spin
interaction, K, present on every hexagonal plaquette.

FIG. 2. �Color online� The dimer states ��1�, ��2�, and ��3� form
the ground state of the Hamiltonian, HK. The thick �blue� lines
denote the dimer singlets.
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To this end, we would like to mention that this exact
ground state of HK is also valid for a general spin-S system.
For the spin-S case, a dimer would denote a singlet state
formed by a pair of spin S. Everything else �that is, the dimer
pattern, the degeneracy, and the ground-state energy� is the
same. Since the maximum total spin of a pair of spin S is 2S,
we can rescale the coupling K

8 to �K/2�
�2S�2S+1��2 . This just makes

the energy contribution of the multiple spin interaction com-
parable �in powers of S� to that of the Heisenberg part.

B. Finite size numerical diagonalization

We have done exact numerical diagonalization of H on an
18-site honeycomb cluster with periodic boundary conditions
�see Fig. 4�. This is just to numerically verify the exact
ground state on a small cluster. We only use total magneti-
zation and spin-inversion symmetries in the coding. The ex-
act diagonalization �ED� results clearly show that the ground
state for the exactly solvable case �K=1� is indeed triply
degenerate with zero energy �see Fig. 3�. Away from the
exact case, the ground-state energy decreases smoothly with-
out level crossing. Moreover, the degeneracy seems to sur-
vive, for K close to 1, even on such a small lattice. We
therefore expect the ground state to remain triply degenerate
over a finite range of K values for large enough systems.

In order to ascertain the nature of K=1 ground state, we
compute the spin-spin correlation, �Si ·S j�, and the dimer-
dimer correlation,

D�i,j,k,l� = ��Si · S j��Sk · Sl�� − �Si · S j��Sk · Sl� . �5�

The latter helps in identifying the dimer order. The D�i,j,k,l� is
positive when the two dimers are singlet correlated and nega-
tive otherwise. We compute these correlations first in the
numerically generated ground state and then compare them
with those calculated in the exactly known dimer ground
state. On the infinite lattice, the nn spin-spin correlation is
equal to −1 /4 �further neighbor spin correlations are identi-
cally zero in the states of Fig. 2� and the dimer-dimer corre-
lation is 1/8 when two dimers are pure singlets.

For K=1, the numerical ground-state wave functions
would be some orthogonal linear combinations of ��1�, ��2�,
and ��3�. The choices of the linear combination are not
unique, however. As we have not implemented translation
and point-group symmetries in our computational scheme,
this ambiguity in the degenerate output states of our �less

sophisticated� program remains. Therefore, we use the zero-
temperature thermal density operator to correctly compute

the ground-state properties. For an operator Ô, its thermal

average is given by �Ô�=Tr��̂Ô�, where �̂=Z−1e−�H is the
thermal density operator �Z=Tr e−�H�. In the zero-
temperature limit, the density operator reduces to

�̂ =
1

Ng
�
�=1

Ng

�������� , �6�

where Ng is the degeneracy of the ground state and ���� are
the orthonormalized ground-state eigenvectors. In the present
calculation, Ng=3.

Since the numerical eigenstates are orthonormal, we use
them directly to compute the correlations in the ground state,
as prescribed above. These data are shown in the second
column of Tables I and II. The exact wave functions, ��1�,
etc., are not orthogonal. Therefore, we first orthogonalize
them using Gram-Schmidt procedure �on the same cluster as
used for numerical diagonalization; see Fig. 4�, then apply
the density operator averaging to compute the correlations.
These are given in the third column of the two tables.
Clearly, the spin correlations are nearest-neighbor type and
the dimer correlation matches nicely with dimer order in the
exact ground state �compare Fig. 2 with Fig. 4�. The numbers
from the two calculations are in excellent agreement.

III. TRIPLON MEAN-FIELD THEORY

While at K=1, the ground state of H has an exact dimer
order but it is known to be a Néel-ordered AF state when
K=0. It would be interesting, therefore, to make some inves-
tigation of the transition from the dimer to Néel-ordered
ground state, as K is varied. Here, we present an approximate

TABLE I. Spin-spin correlation, �Si ·S j�, on 18-site cluster.

�i , j� Numerical diagonalization Exact

�10, 1� 0.00012025 0.00012025

�10, 2� 0.00000000 0.00000000

�10, 3� 0.00012025 0.00012025

�10, 4� −0.00012025 −0.00012025

�10, 5� 0.00000000 0.00000000

�10, 6� −0.00012025 −0.00012025

�10, 7� 0.00012025 0.00012025

�10, 8� −0.00012025 −0.00012025

�10, 9� −0.24987975 −0.24987975

�10, 11� −0.24987975 −0.24987975

�10, 12� −0.00012025 −0.00012025

�10, 13� 0.00000000 0.00000000

�10, 14� −0.00012025 −0.00012025

�10, 15� −0.24987975 −0.24987975

�10, 16� −0.00012025 −0.00012025

�10, 17� 0.00000000 0.00000000

�10, 18� 0.00000000 0.00000000
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FIG. 3. �Color online� Eigenvalues from the exact diagonaliza-
tion of H on the 18-site honeycomb cluster �total Sz=0�.
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study of this quantum phase transition by doing triplon
analysis with respect to the dimerized singlet ground state. A
triplon is a triplet excitation residing on a dimer and dispers-
ing due to the interactions present in the system. While a
nonzero gap in the triplon dispersion implies a stable dimer
phase, the gaplessness corresponds to having AF order in the
ground state.8,28

The triplon analysis is conveniently carried out in the
bond-operator representation in which the singlet and three
triplet states of a pair of spin 1/2 �a bond� are described as

bosons �called bond operators�.28 The bosonic creation op-
erators, s† and t�

† ��=x ,y ,z�, respectively, create singlet and
triplet states on a bond, subjected to the physical constraint,
s†s+ t�

† t�=1 �repeated Greek indices summed over�. The two
spin operators on a dimer are represented as

S1� =
1

2
�s†t� + t�

†s − i	��
t�
† t
� , �7a�

S2� =
1

2
�− s†t� − t�

†s − i	��
t�
† t
� , �7b�

where subscripts 1 and 2 denote the two spins of the dimer
and 	��
 is the totally antisymmetric tensor. In the simplest
triplon analysis, the singlet background is treated as a mean
field �s†� s̄� and the triplon dispersion is calculated by keep-
ing only bilinear terms in the corresponding triplon Hamil-
tonian �that is, by ignoring the interaction between triplons;
please consult Ref. 8 for an in-detail description of the
triplon analysis; we follow the same strategy as therein�.

Although the exact dimer ground state is triply degener-
ate, we can only take one of these as the reference state to
carry out the triplon analysis. This is of course a limitation
when there are degenerate dimer configurations to choose
from �such as in the present case� and one would wish not to
pick one over others. However, we adopt this limited ap-
proach to get some idea of the effect of the nn Heisenberg
interaction on the exact dimer ground state. We rewrite H in
terms of the bond operators, taking ��1� as the reference
background, where the bond-operator representation is used
for the spins on the singlet forming dimers. The Heisenberg
exchange interaction on such a dimer can now be written as

S1�R� · S2�R� = −
3

4
s̄2 +

1

4
t�
† t�, �8�

where R is the position vector of the dimer. For the spins
coming from different dimers, we have

Sl�R� · Sm�R + �� � � �− 1�l+ms̄2

4
�t�

†�R�t��R + �� � + t��R�t��R

+ �� � + H.c.� �l,m = 1,2� . �9�

By using Eqs. �8� and �9�, and applying the constraint on
bond operators globally �with � as Lagrange multiplier�, we
get the following mean-field Hamiltonian for H,

Hmf = E0 +
1

2�
k


�
 − s̄2�k��tk�
† tk� + t−k�t−k�

† �

− s̄2�k�tk�
† t−k�

† + t−k�tk��� . �10�

Here, the triplon operators have been Fourier transformed
from the dimer lattice to the corresponding reciprocal lattice,
with k vectors lying in its first Brillouin zone. Moreover,

E0 =
L

2
� J

4
+

9

8
K − �J +

9

8
K�s̄2 −

5

2

 + 
s̄2� , �11�

TABLE II. Dimer-dimer correlation on 18-site cluster.

Dimer-dimer Numerical diagonalization Exact

�10, 15� �2, 7� 0.12496993 0.12496992

�10, 15� �4, 9� 0.12496993 0.12496992

�10, 15� �6, 11� 0.12496993 0.12496992

�10, 15� �8, 13� 0.12493986 0.12495990

�10, 15� �12, 17� 0.12493986 0.12495990

�10, 15� �14, 1� 0.12496993 0.12496992

�10, 15� �16, 3� 0.12496993 0.12496992

�10, 15� �18, 5� 0.12496993 0.12496992

�10, 15� �2, 3� −0.06253008 −0.06251004

�10, 15� �4, 5� −0.06253008 −0.06251004

�10, 15� �6, 1� −0.06253008 −0.06251004

�10, 15� �8, 9� −0.06253008 −0.06251004

�10, 15� �12, 7� −0.06253008 −0.06251004

�10, 15� �16, 17� −0.06253008 −0.06251004

�10, 15� �18, 13� −0.06253008 −0.06251004

�10, 15� �2, 1� −0.06253008 −0.06251004

�10, 15� �4, 3� −0.06253008 −0.06251004

�10, 15� �6, 5� −0.06253008 −0.06251004

�10, 15� �8, 7� −0.06253008 −0.06251004

�10, 15� �12, 11� −0.06253008 −0.06251004

�10, 15� �14, 13� −0.06253008 −0.06251004

�10, 15� �18, 17� −0.06253008 −0.06251004

1
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7
8 9 10 11 12
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13
14 15 16

17
18

13

1 3 5

FIG. 4. �Color online� The dimer-dimer correlations are calcu-
lated by taking the dimer �10,15� as reference. Thickness of the
dimers is proportional to their dimer correlation values. The thick
blue dimer denotes the positive correlation �i.e., a singlet�, whereas
the purple �dashed� ones represent negative correlation �i.e., no
singlet�.
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 =
1

4
�J +

9

8
K� − � , �12�

and

�k = �J +
9

8
K�1 − s̄2��cos�3

2
kx�cos�	3

2
ky� , �13�

where 
 is the effective chemical potential. Equation �10� is
diagonalized by the Bogoliubov transformation. The diago-
nal mean-field Hamiltonian can be written as

Hmf = E0 + �
k

Ek�
k�
† 
k� +

3

2
� , �14�

where 
k�’s are Bogoliubov bosons and the triplon disper-
sion, Ek=	
�
−2s̄2�k��0. The ground-state energy per site
is given by

eg�
, s̄2� = e0 +
3

2L
�
k

Ek, �15�

where e0=E0 /L. By minimizing the ground-state energy with
respect to 
 and s̄2, we get the self-consistent equations,
whose solution gives the mean-field results.

A. Dimer phase

When the minimum of the triplon dispersion is nonzero,
the dimer phase is stable against triplet excitations. There-
fore, the gapped triplon phase corresponds to having dimer
ground state. The self-consistent equations in this case are

s̄2 =
5

2
−

3

L
�
k


 − s̄2�k

Ek
, �16a�


 = J +
9

8
K +

3


L
�
k

�k

Ek
, �16b�

where �k=�k− 9
8Ks̄2 cos� 3

2kx�cos�
	3
2 ky�. These equations are

obtained by minimizing the ground-state energy, i.e.,
�eg /�
=0 and �eg /�s̄2=0.

The weight of having singlet state on a dimer is measured
by s̄2. If all the dimers form perfect singlets �like in the exact
case�, then s̄2=1. Otherwise, we get s̄2�1, due to triplon
fluctuations in the ground state.

B. Néel phase

As K is gradually decreased away from K=1, at some
point we find that the triplon gap vanishes �see Fig. 5�. The
triplon dispersion now touches zero at k=Q, where
Q= �0,0�. It means the triplon occupancy at wave vector Q
becomes singular, which implies the Bose condensation of
triplons at Q. Thus, we need to introduce a third quantity �in
addition to 
 and s̄2�, the triplon condensate density, nc,
which is notionally given by

nc =
2

L
�tQ�

† tQ�� �
3

L
�
 − s̄2�Q

EQ
� . �17�

Now, the revised set of self-consistent equations is


 = 2s̄2�Q, �18a�

nc =
1

2�Q
�
 −

3


L
�

k�Q

�k

Ek
− �J +

9

8
K�� , �18b�

s̄2 =
5

2
− nc −

3

L
�

k�Q


 − s̄2�k

Ek
. �18c�

Physically, the nonzero nc corresponds to having an AF order
in the ground state, which in the present case comes out to be
the Néel order. The staggered magnetic moment in the Néel
phase is given by Ms= s̄	nc.

IV. RESULTS AND DISCUSSION

Now, we present the results obtained by the triplon mean-
field calculation. The self-consistent Eqs. �16a� and �16b� of
the gapped phase are solved for 
 and s̄2, for different values
of K. Interestingly, for K=1, it gives s̄2=1, same as the exact
answer �see Fig. 6�. Moreover, the mean-field and exact
ground-state energies are both zero, as shown in Fig. 9. At
the exact point, the triplon dispersion, Ek �plotted in Fig. 5�,
is flat with an energy gap of 1.125.

This value of gap at K=1 is in agreement with an estimate
of 9/8, which is calculated as: ��K=1�= ���HK��� / �� ���, where

0.0

1.0

2.0

3.0

E
k

K=0.20

K=0.30

K=0.80

K=1.00

�� A B ��

Γ A

B

FIG. 5. �Color online� Triplon dispersion Ek for different values
of K. The �, A, and B denote the wave vectors �0,0�, �2� /3,0�, and
�2� /3,2� /3	3� in the Brillouin zone.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

K

λ
s2

FIG. 6. �Color online� The singlet weight, s̄2, and the effective
chemical potential 
.
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��� is a “trial” localized triplon state as defined below

��� = �� 

�i,j��D�

�i, j�� � 
k,l� . �19�

Here, D� is the set of all dimers in D except �k , l� and 
k , l�
denotes a triplet state on the bond �k , l�. The set D is the set
of all singlet forming dimers in ��1� �see Eq. �3��.

For K�1, Ek acquires a finite width, with minimum at the
� point �that is, Q�. Eventually, it touches zero at Q and
remains so below K�=0.256. For K�K�, we solve Eq. �18�
self-consistently. As shown in Fig. 7, now the staggered mag-
netization, Ms, acquires a nonzero value while the gap re-
mains zero. Our value of Ms at K=0 �pure Heisenberg
model� is around 0.173, as compared to its value of 0.242
from spin-wave analysis,14 0.266 from series expansion,16

and 0.22 from Monte Carlo simulations.15 Our calculation
gives a smaller value of the staggered magnetization because
it is built around the singlet phase which obviously has more
quantum fluctuations in it.

The triplon mean-field theory thus predicts a continuous
transition from the dimer to Néel-ordered phase in the
ground state of H for spin 1/2. The phase diagram is just a
line presented in Fig. 8. As pointed out earlier, the K=1
model has the same exact ground state for higher spins also.
Therefore, in some future studies, it would be interesting to
extend this quantum phase diagram to include a spin axis,
with S=1 /2,1 ,3 /2, . . . to S→� �the classical limit�. The
classical case can be discussed right away. Let the spins be
classical vectors. The HK will now have an infinitude of spin
configurations in the ground state �not related via global spin
rotation� because the spins on each dimer �of Fig. 2�, sepa-
rately, must cancel. Hence, HK itself is a frustrated model.
But the classical nn Heisenberg interaction does not need to
compete against HK for winning the ground state as the infi-
nite set of pairwise spin-canceled configurations also in-
cludes the Néel states. Therefore, in the classical limit, K�

=1. This discussion reveals an important feature of H, which
is that the multiple spin and Heisenberg interactions do not
compete against �or frustrate� each other. Instead, the quan-
tum mechanics acts better when K is sufficiently large.
Hence, the Néel to dimer order transition in the ground state
of H is driven purely by the quantum fluctuations.

Below, we present the critical behavior of the spin gap
and staggered magnetization within this mean-field triplon
analysis. The critical exponents for both the quantities are
derived by analyzing the equations for the gap and nc in the
small neighborhood of K�,

� � 0.12�K − K��1/2, �20a�

Ms � 0.44�K� − K�1/2. �20b�

Figure 10 shows an enlarged plot of the mean-field data
around K�, together with the estimated critical behavior. In
the standard notation, Ms��K−K��� and ���K−K��z�,
where z is the dynamical exponent and � is the correlation
length exponent. The critical exponent, �=1 /2, from our cal-
culation is same as the exponent from the quantum O�N�
nonlinear sigma model theory of a 2D quantum antiferro-
magnet in the limit N→�.29 It is more than the numerically
computed value of 0.34 for a planar antiferromagnet.30 Tak-
ing z=1, as it is normally, we get �=1 /2, as compared to the
value of 1 from the large N sigma model theory29 and the
numerically computed values of 0.69 for a quantum antifer-
romagnet on CaV4O9 structure30 and 0.63 for the staggered
dimer model on square lattice.31
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FIG. 7. �Color online� The spin gap, �=EQ, and the staggered
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Dimer PhaseNéel| |
10 K

K∗ = 0.256

FIG. 8. �Color online� The mean-field quantum phase diagram
of H for spin 1/2.

0.0 0.2 0.4 0.6 0.8 1.0
–0.6

–0.4

–0.2

0.0

0.2

K

G
ro

u
n

d
st

at
e

en
er

g
y

p
er

si
te

ED
MFT

FIG. 9. �Color online� The ground-state energy from the MFT
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V. SUMMARY

We have constructed and studied a quantum spin-1/2
model on honeycomb lattice. In one limit of the interaction

parameter �K=1�, the model has an exact threefold degener-
ate dimer ground state. Away from the exact case
�0�K�1�, we study the evolution of the ground state using
triplon mean-field theory. The mean-field theory is exact at
K=1 and it shows a continuous quantum phase transition
from the dimer-ordered to Néel-ordered ground state at
K�=0.256. Within this mean-field theory, the critical expo-
nents for the spin gap and the staggered magnetization are
found to be 1/2. We also have performed the exact diagonal-
ization on an 18-site honeycomb cluster. For K=1, it gives
the triply degenerate ground state with the same spin-spin
and dimer-dimer correlations as in the exact dimer ground
state.

Finally, we would also like to note that while the present
model contains two-, four-, and six-spin interactions, it
seems okay to ignore the six-spin terms as far as the dimer
order in the ground state is concerned. The data presented in
Table III shows that, although the dimer order in the ground
state of K=1 model without six-spin terms �that is, H�6�=0�
has weakened as compared to that in the exact dimer states,
the positions of singlet-correlated bonds remains unchanged
�note the sign of the dimer-dimer correlation�. In fact, the
triplon MFT anyway ignores the six-spin interactions, and
still agrees with the exact results at K�1. This simplistic
observation presents a realistic hope of realizing such ground
states in some honeycomb material because a combination of
two-spin and four-spin interactions with suitable strengths is
not completely unlikely to occur in a real system.
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